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Abstract—
In this paper, we examine security issues related to proactive

routing protocols for MANETs. Specifically, we investigate secu-
rity properties of the Optimized Link-State Routing Protocol - one
example of a proactive routing protocol for MANETs. We investi-
gate the possible attacks against the integrity of the network rout-
ing infrastructure, and present techniques for countering a vari-
ety of such attacks. Our main approach is based on authentication
checks of information injected into the network. However even
with perfect authentication check, replay attacks are still possi-
ble. Hence, we develop a distributed timestamp-based approach
for verifying if a message is “old” or “current”. We finally present
two different, simple algorithms for distributing public keys in a
MANET, in order to provide a mechanism permitting authentica-
tion checks to be conducted. While we use OLSR as an example
protocol for our studies, we argue that the presented techniques
apply equally to any proactive routing protocol for MANETs

I. INTRODUCTION

A Mobile Ad-hoc NETwork (MANET) is a collection of
nodes which are able to connect on a wireless medium form-
ing an arbitrary and dynamic network. Implicitly herein is the
ability for the network topology to change over time as links in
the network appear and disappear.

In order to enable communication between any two nodes in
such a MANET, a routing protocol is employed. The abstract
task of the routing protocol is to discover the topology (and, as
the the network is dynamic, continuing changes to the topology)
to ensure that each node is able to acquire a recent image of the
network topology for constructing routes.

Currently, two complimentary classes of routing protocols
exist in the MANET world. Reactive protocols acquire routes
on demand through flooding a “route request” (which typically
also records the path taken) and receiving a “route reply” (typ-
ically signaling the path taken by the route request to arrive at
the destination node). I.e. the required parts of the topology
graph is constructed in a node only when needed for data traffic
communication. Reactive MANET routing protocols include
AODV [13] and DSR [9].

The other class of MANET routing protocols is proactive, i.e.
the routing protocol ensures that all nodes at all times have suf-
ficient topological information to construct routes to all destina-
tions in the network. This is achieved through periodic message
exchange. Proactive MANET routing protocols include OLSR
[1] and TBRPF [12]

A. Security Issues

A significant issue in the ad-hoc domain, is that of the in-
tegrity of the network itself. AODV, DSR, OLSR and TBRPF
allow, according to their specifications, any node to participate
in the network - the assumption being that all nodes are well-
behaving and welcome. If that assumptions fails - that the net-
work may be subject to malicious nodes - the integrity of the
network fails.

An orthogonal security issue is that of maintaining confi-
dentiality and integrity of the data being exchanged between
communications endpoints in the network (e.g. between a mail
server and a mail client). The task of ensuring end-to-end secu-
rity of data communications in MANETs is equivalent to that of
securing end-to-end security in traditional wire-line networks,
and is not considered further in this paper.

The primary issue with respect to securing MANET routing
protocols is thus that of ensuring the network integrity, even in
presence of malicious nodes. Security extensions to the reactive
protocols AODV and DSR exist, in form of SAODV [7] and
Ariadne [8]. Assuming that a mechanism for key distribution
is in place, these extensions employ digital signatures on the
route request and route reply messages. The basic principle
being, that each node verifies the signature of a message and -
if valid - modifies the message (if applicable), signs it itself and
forwards the message.

In this paper, we will investigate the issues of security in
proactive MANET routing protocols, especially with emphasis
on providing a security extension to OLSR.

B. Paper outline

The remainder of this paper is thus organized as follows: sec-
tion II presents OLSR with sufficient details to device security
mechanisms which will integrate with the protocol. Following,
section III will describe the vulnerabilities of proactive rout-
ing protocols, utilizing OLSR for exemplifying the threats to
which any proactive ad-hoc routing protocol is vulnerable. Sec-
tion IV will proceed by describing a basic mechanism for secur-
ing OLSR. This section assumes that nodes are either untrusted
or trusted - and that trusted nodes are not compromised. The
mechanism proposed in this section also implies the existence
of “global timestamps” and assumes that there exists a mecha-
nism for distributing cryptographic keys between the nodes in
the network. Thus, section V explores the problem of provid-
ing the nodes in the network with a suitable way of comparing
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“timestamps” to determine if messages are “too old”. This pro-
vides a way of dealing with the problem of message replays,
in which a node repeats “old” messages which were previ-
ously transmitted (and correctly signed). Following, section VI
describes mechanisms for distributing cryptographic keys in
a MANET. This section assumes that asymmetric public-key
cryptography is employed, and presents two simple solutions
for key distribution. Finally, the paper is concluded in sec-
tion VII, with a discussion of the applicability of the proposed
security architecture.

II. THE OPTIMIZED LINK STATE ROUTING PROTOCOL

The Optimized Link State Routing protocol (OLSR) [3], [1]
is a proactive link state routing protocol, designed specifically
for mobile ad-hoc networks. OLSR employs an optimized
flooding mechanism for diffusing link-state information, and
diffuses only partial link-state to all nodes in the network.

In this section, we will describe the elements of OLSR, re-
quired for the purpose of investigating security issues. A com-
plete description of OLSR can be found in [1].

A. OLSR Control Traffic

Control traffic in OLSR is exchanged through two different
types of messages: “HELLO” and “TC” messages. HELLO
messages are exchanged periodically among neighbor nodes,
in order to detect links to neighbors, to detect the identity of
neighbors and to signal MPR selection. TC messages are peri-
odically flooded to the entire network, in order to signal link-
state information to all nodes.

1) HELLO messages: HELLO messages are emitted peri-
odically by a node, including its own address as well as encod-
ing three lists: a list of neighbors, from which control traffic has
been heard (but where bi-directionality is not yet confirmed), a
list of neighbor nodes, with which bidirectional communication
has been established, and a list of neighbor nodes, which have
been selected to act as MPR for the originator of the HELLO
message. HELLO messages are exchanged between neighbor
nodes only.

Upon receiving a HELLO message, a node examines the lists
of addresses. If its own address is included, it is confirmed that
bi-directional communication is possible between the origina-
tor and the recipient of the HELLO message. When a link is
confirmed as bi-directional, this is advertised periodically by a
node with a corresponding link status of “symmetric”.

In addition to information about neighbor nodes, periodic
exchange of HELLO messages allows each node to maintain
information describing the links between neighbor nodes and
nodes which are two hops away. This information is recorded
in a nodes 2-hop neighbor set and is explicitly utilized for the
MPR optimization - the core optimization of OLSR, described
in section II-A.3.

2) TC messages: Like HELLO messages, TC messages are
emitted periodically by a node. The purpose of a TC message is
to diffuse topological information to the entire network. Thus,
a TC message contains a set of bi-directional links between a
node and a subset of its neighbors. For a discussion on the se-
lection of which neighbors to include in the TC messages to

provide sufficient topology information, refer to [1] and [4].
TC messages are diffused to the entire network, employing the
MPR optimization described in section II-A.3

3) Multipoint Relay Selection and Signaling: The core op-
timization in OLSR is that of Multipoint Relays (MPRs). The
concept is as follows: each node must select MPRs from among
its neighbor nodes such that a message emitted by a node and
repeated by the MPR nodes will be received by all nodes two
hops away. MPR selection is performed based on the 2-hop
neighbor set received through the exchange of HELLO mes-
sages, and is signaled through the same mechanism: a link-
status of “MPR” specifies that the link between the originator
of the HELLO message and the listed address is symmetric -
and that the node with the included address is selected as MPR
by the originator.

Thus, each node maintains an MPR selector set, describing
the set of nodes which have selected it as MPR. Upon receiv-
ing an OLSR control message, a node will consult the MPR
selector set for determining if the message is to be retransmit-
ted: if the last-hop of the control message is an MPR selector,
then the message is to be retransmitted - otherwise it is not re-
transmitted. Figure 1 shows a node with neighbors and 2-hop
neighbors. In order to achieve a network-wide broadcast, it suf-
fices that a broadcast transmission be repeated by a subset of
the neighbors. This subset is made up from the MPR-set of the
node. For further information, including an efficient heuristic
for computing the MPR set of a node, refer to [14].

(a) (b)

Fig. 1. Two hop neighbors and “multipoint relays” (the solid circles) of a
node. (a) illustrates the situation where all neighbors retransmit a broadcast, (b)
illustrates where only the MPRs of a node retransmit the broadcast

B. OLSR Message Format and Packets

OLSR control messages are communicated using a “trans-
port protocol” defined by a general packet format containing
individual control messages, as well as rules governing the pro-
cessing of such packets and messages. In this section, we will
outline this transport protocol. The purpose is to outline how
security extensions can be almost effortlessly included, and to
understand the mechanisms under which the security extensions
must be designed.

The OLSR packet format is given in figure 2.
It is important to notice, that while messages potentially may

be intended to be broadcasted to the entire network (e.g. a
TC message), packets are transmitted only between neighbor
nodes. Messages, intended to be forwarded, are (if the node is
MPR for the last-hop of the message) re-encapsulated in each
node and retransmitted. I.e. the unit of information subject to
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0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Packet Length | Packet Sequence Number |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Message Type | Vtime | Message Size |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Originator Address |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Time To Live | Hop Count | Message Sequence Number |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| |
: MESSAGE :
| |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Message Type | Vtime | Message Size |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Originator Address |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Time To Live | Hop Count | Message Sequence Number |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| |
: MESSAGE :
| |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
: :

(etc)

Fig. 2. Generic OLSR packet format. Each packet encapsulates several control
messages into one transmission

being forwarded is “messages”. The common packet format al-
lows that individual messages be piggybacked and transmitted
together in one emission (MTU-size allowing). I.e. TC and
HELLO messages may be emitted together, however are pro-
cessed and forwarded differently in each node (HELLO mes-
sages are not forwarded while TC messages are).

It is important to notice, that an individual OLSR control
message can be identified by its Originator Address and Mes-
sage Sequence Number - both from the message header. Hence,
disregarding issues of wraparound of the Message Sequence
Number, it is possible to uniquely refer to a specific control
message in the network. This will become of importance when
discussing message signatures in section IV.

Further details on the OLSR packet and message formats can
be found in [1].

III. VULNERABILITIES

In this section, we will discuss various security vulnerabil-
ities in proactive routing protocol for ad-hoc networks. We
will specifically enumerate vulnerabilities in OLSR, however
we point out that this section does not emphasize “flaws” in
the OLSR protocol. Rather, the vulnerabilities are instances of
what all proactive routing protocols are subject to.

One vulnerability, common for all routing protocols operat-
ing a wireless ad-hoc network, is that of “jamming” - i.e. that a
node generates massive amounts of interfering radio transmis-
sions, which will prevent legitimate traffic (e.g. control traffic
for the routing protocol as well as data traffic) on part of a net-
work. This vulnerability cannot be dealt with at the routing
protocol level (if at all), leaving the network without the ability
to maintain connectivity. Jamming is somewhat similar to that
of network overload: a sufficiently significant amount of rout-
ing protocol control traffic is lost, preventing that routes can be
constructed in the network. In this paper, we will not consider
a networks resistance against neither jamming nor traffic over-
loading.

Our assumption is thus, that the routing protocol is able to
consistently provide a correct view of the network topology in
each network node. This assumption implies that all nodes in

the network correctly implement the routing protocol - specifi-
cally that each node correctly processes and emits control traf-
fic.

Thus an attack on the ability to provide connectivity in the
network must result from incorrect behavior of, at least, one
node in the network. In this context, incorrect means that the
node does not process and emit control traffic in accordance
with the routing protocol specifications. We note, that in most
cases such non-conforming behavior of a node will be due to
malice - i.e. specially targeted to interfere with the network
connectivity. The node responsible for this incorrect behavior
may be either an intruder (i.e. a node which is not supposed to
be in the network) or a compromised node (i.e. a node, which
is supposed to be in the network, but which has been modified
to be non-conforming with the routing protocol). We also note,
that non-conforming behavior of a node may be without malice
- e.g. due to a simple malfunction of a node.

When an ad-hoc network is operating under a proactive rout-
ing protocol, each node has two different (but related) respon-
sibilities. Firstly, each node must correctly generate routing
protocol control traffic, conforming to the protocol specifica-
tion. Secondly, each node is responsible for forwarding routing
protocol control traffic on behalf of other nodes in the network.
Thus incorrect behavior of a node can result from either a node
generating incorrect control messages or from incorrect relay-
ing of control traffic from other nodes. This is illustrated in
figure 3.

Fig. 3. Two kinds of attacks in a proactive routing protocol: node X generates
incorrect information (e.g. advertises node A as a neighbor, while node Y does
not relay control traffic for other nodes.

In the remainder of this section, we will investigate how these
incorrect behaviors appear in OLSR. We note, that while we
employ OLSR for the purpose of our investigations, much of
the following applies equally for other proactive routing proto-
cols.

A. Incorrect Control Traffic Generation

OLSR employs, basically, two different kinds of control traf-
fic: HELLO messages and TC messages. In this section, we
will describe how a non-conforming node may affect the net-
work connectivity through incorrect generation of HELLO and
TC messages.

In general, we observe that with respect to control traffic gen-
eration, a node may misbehave in two different ways: through
generating control traffic “pretending” to be another node (i.e.
Identity Spoofing) or through advertising incorrect information
(links) in the control messages (i.e. Link Spoofing).
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B. Incorrect HELLO messages

Identity Spoofing: A node may send HELLO messages, pre-
tending to have the identity of another node. E.g. node X sends
HELLO messages, with the originator address set to that of
node A, as illustrated in figure 4. This may result in the net-
work containing conflicting routes to node A. Specifically, node
X will choose MPRs from among its neighbors, signaling this
selection pretending to have the identity of node A. The MPRs
will, subsequently, advertise that they can provide “last hop”
to node A in their TC messages. Conflicting routes to node A,
with possible loops, may result from this.

Fig. 4. Identity Spoofing of HELLO messages: node X assumes the identity
of node A for sending HELLO messages. Nodes B and C may, subsequently,
announce reachability to node A through their TC messages.

Link Spoofing: A node may send HELLO messages, signal-
ing an incorrect set of neighbors. This may take either of two
forms: if the set is incomplete, i.e. a node “ignores” some
neighbors, the network may be without connectivity to these
“ignored” neighbors.

Alternatively, a compromized node advertising a neighbor-
relationship to non-present nodes may cause inaccurate MPR
selection with the result that some nodes may not be reachable
in the network.

C. Incorrect TC Messages

Identity Spoofing: A node may send TC messages, pretend-
ing to have the identity of another node. Effectively, this implies
link spoofing since a node assuming the identity of another node
effectively advertises incorrect links to the network.

Link Spoofing: A node may send TC messages, advertising
an incorrect set of links. This may take either of two forms: if
the set is incomplete, i.e. a node “ignores” links to some nodes
in its MPR selector set, the network may be without connectiv-
ity to these “ignored” neighbors - as well as to neighbors which
are reachable only through the “ignored” neighbors. A node
may also include non-existing links (i.e. links to non-neighbor
nodes) in a TC message. This is illustrated in figure 5.

Link spoofing in TC messages may yield routing loops and
conflicting routes in the network.

D. Incorrect Control Traffic Relaying

If TC messages (or routing protocol control messages in gen-
eral) are not properly relayed, connectivity loss may result. In
networks where no redundancy exists (e.g. in a “strip” net-
work), connectivity loss will surely result, while other topolo-
gies may provide redundant connectivity. Similarly if a node

Fig. 5. Node X generates incorrect TC messages, e.g. advertising a link
between node X and node A.

does not forward data packets (e.g. if intra-node forwarding is
impaired), loss of connectivity may result.

IV. SECURING OLSR

In this section, we will present a framework, allowing OLSR
to resist the security issue which were identified in section III.

We assume that the integrity of the nodes in the network is
intact, i.e. that a trusted node is not compromized (i.e. that
a trusted node is behaving correctly). Thus, the aim is to en-
sure that only control traffic from trusted nodes is considered
in the network, and that the integrity of such control traffic is
preserved.

In this section we will first outline the requirements to a
cryptographic system, followed by the mechanisms of sign-
ing OLSR control messages. This mechanism is cryptography-
agnostic, i.e. both asymmetric and symmetric algorithms may
be employed as desired. The description furthermore assumes,
that the necessary keys to perform signing and verification op-
erations are available to each node.

A. Cryptographic Requirements

The security architecture proposed is mostly cryptography
agnostic. I.e. few constraints are enforced on the cryptographic
system employed to secure OLSR as described in this paper.
In fact, any cryptographic system, satisfying the following two
requirements, may be employed:� a signature for a message can be generated in a node using

a function:
sign(nodeid, key, message)� a signature for a message can be verified in a node using
a function:
verif(originatorid, key, message,
signature)

Public-key as well as symmetric shared-secret key systems
can be employed. The properties of various cryptographic sys-
tems are beyond the scope of this paper.

B. OLSR Signatures

To prevent malicious nodes from injecting incorrect informa-
tion into the network, a signature is generated by the originator
of each OLSR control message and transmitted with the control
message. In addition, a timestamp is associated with each sig-
nature, in order to estimate a message freshness. Timestamps
are discussed in section V.
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0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Sign. Method | Reserved | MSN Referrer |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| |
: Timestamp :
| |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| |
: Signature :
| |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

Fig. 6. OLSR signature message format

Thus, upon receiving the control message, a node can deter-
mine if the message originates from a trusted node, and if the
message integrity is preserved.

Signatures and timestamps are, inheritly, separate entities
from OLSR control traffic: while OLSR control traffic serves to
acquire and distribute topological information, signatures serve
to validate information origins and integrity. Thus, we intro-
duce signatures as a separate type of OLSR control messages,
encapsulated and transmitted as described in section II-B.

Signatures are used by a receiving node to authenticate the
corresponding OLSR control message: every control message
without a matching corresponding signature is rejected. De-
pending on the properties of the signature method, different
levels of authentication and resilience to attacks can be pro-
vided. For instance, the highest level of authentication may be
provided by using individual asymmetric keys, as the messages
advertised as generated from every non-compromised node are
uniquely accepted when they indeed originate from this node.
Weaker (but less complex or less computationally intensive)
systems can be imagined, e.g. employing a shared secret-key
system among trusted nodes.

In more details, for each TC or HELLO message generated, a
corresponding signature message is generated and transmitted.
The format of a SIGNATURE MESSAGE is specified in figure 6.

To compute a signature corresponding to a TC or HELLO
message, the following approach is used. Notice, that this has
some similarities with checksum computation:� the node creates the OLSR control message (HELLO or

TC),� the “current timestamp” is obtained and updated. Times-
tamps are used for replay protection, and are discussed into
detail in section V,� the signature is computed on the sequence of bytes made
up from (i) the TC or HELLO message and (ii) the times-
tamp. Notice, that for the computation of the signature,
the TTL and Hop-Count fields of the TC or HELLO mes-
sage are considered as set to 0 (zero) since these fields are
modified while the message is in transit and, thus, would
otherwise interfere with with verification of the message
by the receiving node. Thus, the signature is:
signature = sign(nodeid,key,

< OLSR control message,
timestamp > )

Upon receiving a matching message and signature pair, the
receiving node verifies the signature thus (again, considering
the TTL and Hop-Count of the message to be set to zero):

verif(originator address, key,
< OLSR control message, timestamp >,

signature)}

If the verification returns true, then the node proceed to per-
form timestamp verification, as described in section V.

The signature and the timestamp are contained in an OLSR
control message, as illustrated in figure 6 and are transmitted
as the data-portion of the general packet format described in
section II-B, with the ”Message Type” set to SIGNATURE MESSAGE

, the TTL and Vtime fields set to the values of the TTL and
Vtime fields of the message to which the signature is associated.

In order to identify correspondence between a TC or HELLO

message, the SIGNATURE MESSAGE contains in the MSN Referrer
field the value of the Message Sequence Number of the con-
trol message to which this signature is associated. However
as pointed out in section II-B, the correspondence achieved
by the Message Sequence Number is only unique if possible
wraparound of the 16 bit field are disregarded. This is how-
ever not a problem since a node further can use the signature
verification to check the correspondence between the control
message and the signature message:� Upon receiving a HELLO or TC message, the node holds

the message (for an implementation dependent duration),
waiting for corresponding signature message.� Upon receiving a signature message, every message held
in the previous step, with the same MSN and originator
address as the MSN Referrer and originator address in the
signature message, is checked for a signature match. If a
signature match is found, the timestamp is further verified,
as described in next section. If both signature and times-
tamp are validated, the message is accepted and processed
following the rules of the OLSR protocol. If not, both the
signature message and the control message(s) are held.

The Sign. Method fields specifies which method, among a
predefined set, is being used to generate the summary of the
control message, as well as the actual signature. This includes
informations about the keys to use, the hashing function used
for signature, and timestamp methods.

V. TIMESTAMPS

A common problem in distributed systems with non-secure
communication channels is that, even assuming a signature is
checked (thus ensuring authentication of the source of a mes-
sage), replay of previously transmitted messages is possible by
an intruder. For instance, an intruder in a network may replay
one day worth of control messages, which, if they cannot be
identified as “old” (for some definition of old), will be accepted
as valid because they are properly signed. This may easily dis-
rupt the protocol functioning and thus the network integrity.

Timestamps or nonces are a commonly used means to prevent
replay attacks, (e.g. Kerberos [15] or [2] for more examples
from a library of authentication protocols), and are indeed nec-
essary (e.g. [5]). The idea is to device a proof of freshness, such
that older pieces of information can be detected and rejected. In
OLSR, MSSN and ANSN are already used for achieving those
goals in the context of allowing the routing protocol to deter-
mine which information is more recent. However while these
sequence numbers are sufficient for the basic routing protocol
functioning, they are not sufficient to provide full security: each
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are a 16 bit field, which implies that wrap-around happens too
frequently to provide efficient protection against malice from
intruding nodes.

In this section, we describe several timestamp algorithms,
providing different levels of security at the expense of differ-
ent costs. For the purpose of our discussion, we employ the
following terminology:� a clock is the “device” (hardware, software) within a node

keeping track of the time,� a timestamp is the value of a clock, recorded in a piece of
information (e.g. a message), at the time of generation of
the information.

Further discussion of timestamp methods can be found in [6].
Commonly, the following methods are employed for providing
timestamps:� real time: a clock expresses time in some natural resolu-

tion such as seconds, microsecond, etc.� logical time:, i.e. a clock is incremented each time an
event occurs, such as message generation.

Note that these are just different ways to express the same
idea of time: the basic property being that time is monotonically
increasing, and that a upon receiving a message containing a
timestamp, the receiving node has some idea of how the value
in the timestamp compares to the value of the clock - i.e. what
the timestamp should be.

For each message being emitted by a node, an unique times-
tamp, �����	��
��	 , is included. Let ��� denote the value of the clock
in a receiving node, around which the timestamp, �����	��
��	 , in a
received message is expected to be. Then, a more formal ex-
pression of a message being “not too old” may be:

� � ���	��
��	�� � � ����������� (1)

where
�������

is a constant used to limit the timestamp dis-
crepancy while allowing for some small deviation. Thus, (1)
provides a simple framework for replay check, i.e. checking
if a received message is original, or is a replay of a previous
message.

The replay check in (1) can be complemented, in order to also
prevent replays within a small time-scale (i.e. replays within a
delay less than

� �����
), by maintaining a signature table. The

signature table contains the signatures of the most recently re-
ceived messages, for a duration greater or equal to

� �����
. If the

signature of a received message is already in the signature ta-
ble, it is ignored since the message has already been received
and processed. This is similar to the duplicate table of OLSR
(ensuring that TC messages are processed and forwarded once).
Indeed, the functionalities of both the signature table and the
OLSR duplicate table could be merged.

The way in which timestamps are generated is not neces-
sarily obvious, as they assume either synchronous real-time
timestamps, non-volatile timestamp, or they implicitly require
a challenge-response protocol.

In the following, we present different methods for generat-
ing timestamps. Two of these are derived from ideas described
in [6], the last being a derivative of the well-known Needham-
Schroeder public key authentication algorithm [11]. The differ-
ent methods introduces different levels of complexity, cost and
security tradeoffs.

1) No timestamps: If no replay protection is desired, nodes
may just set the timestamp to be 0 when generating messages,
and not check the timestamps upon receiving.

2) Real-time timestamps: A conceptually simple way to
generate timestamps (although not the easiest to implement),
is to use a real time clock in each node, assuming some kind of
synchronization. This can be achieved in several ways:� by having a “safe” source of time in each node, sufficiently

precise and with sufficiently little drift. This could e.g. be
in form of an atomic clock, access to the time as obtained
by a GPS device - or simply a normal clock in each node,
adjusted by means of wristwatch.� by clock synchronization.

The criterion for accepting a message is indeed simply� � ���	��
��	�� � ����������� (2)

where � is the value of the clock on the receiving node.
With respect to clock synchronization, a dilemma arises: as

[6] notes, timestamps are used for authentication, but secure
clock synchronization itself requires authentication. This is
overcome by performing authentication and clock synchroniza-
tion operations at the same time. However the main prob-
lem with secure clock synchronization in a MANET is, that
many algorithms require a fixed fraction (percentage) of non-
compromised nodes in order to operate. Since in a MANET,
an intruding node can impersonate as many fictional nodes as
it wishes (under the limitation that those fictional nodes have
keys known to the network), a guaranteed fraction of non-
compromized nodes is unobtainable. Even a clock synchroniza-
tion algorithm, such as [5], which doesn’t require any such frac-
tion of correct nodes to run properly, provenly cannot bound the
necessary delay of synchronization when a new node wishes to
join (e.g. participate in the network for the first time). This is
quite problematic in a wireless ad-hoc network, since nodes are
expected to be able to leave and join at any time.

Since secure time synchronization is not simpler than the
protocol described in section V-.4, this approach will not be
pursued further in this paper.

3) Non-volatile timestamp: A way to provide weak times-
tamps is, to have the clock of each node of the network main-
tained in non-volatile memory, initialized the first time a node
signature keys is used after generation.

The value of this clock is, then, used as timestamp in each
message signed, after which the value is incremented. While
the sender maintains the clock in non-volatile memory, re-
ceivers maintain a table containing the maximal timestamps re-
ceived from all nodes in the network.

In the receiver node  , the algorithm for processing a mes-
sage from sender ! with timestamp ��" , is the following:�  keeps the value of �$#" , the highest timestamp from ! it

ever received, in non-volatile memory.� If  hasn’t received any value from ! ,  considers the
highest timestamp received from ! to be �%#"'&)( .� If ��"+*,�-#" �/. , the message is accepted, otherwise it is
rejected and not processed further. . is some fixed (small)
constant, to allow for out of order receiving of message.. must be tuned accordingly to the specifics of the ad-hoc
network.
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� �-#" is updated: �-#"�0 ����12&4365�798 � "�: �-#"<;
These are security-wise weaker timestamps since, if commu-

nication between the sender and the receiver is broken for some
time, all the messages from the sender can be replayed to the re-
ceiver. This is especially true if the sender and the receiver are
in different, non-connected, networks. The advantage is, that
as soon as the receiver and the sender are able to communicate
with each other, only limited replay is possible. This replay can
further be suppressed with the signature table, described previ-
ously.

In OLSR, non-neighbor nodes may never exchange messages
(nodes, which are not selected as MPR by any other nodes ex-
change messages only with their neighbor nodes). In this case,
the timestamps would never be updated. Thus it would be nec-
essary that each node periodically broadcasts at least an empty
message in order to provide synchronization.

Note that a variant using a local “wall clock” time instead
of incremented timestamps is possible, and could allow more
stringent checks, although the algorithm still remains vulnera-
ble.

4) Timestamp Exchange Protocol: This part describes a
timestamp exchange protocol, which essentially mixes a dis-
tributed challenge-response protocol with timestamps. It is
a variation over the Needham-Schroeder public key protocol
[11], albeit with a superset of the information (and includes, for
instance, the necessary correction of the protocol proposed in
[10]), using signatures instead of encryption, and using times-
tamps instead of nonces.

The assumptions for the protocol are the following:� Each node, = , keeps a clock, ��> , whose value is used in
the timestamp fields of generated messages, represented
by a identical fixed amount of bytes for all nodes. The
clock increases monotonically with each message sent
(and with wall clock). At a given wall clock time ? , the
clock in the node = is denoted � > 8 ? ; .
The clock, � > , is also used as a nonce and thus should be
initialized (fully, or in part) with random values.

First a simplified version of the protocol is given, illustrating
the only key ideas of the protocol, limited to two nodes = , @ .
We use the notation ACBEDGFIHKJMLK"ON meaning “ A sends to D
the message J signed with the private key of A ”:

1) At ?	P : =QB)@RFSHT= : �U> 8 ?	P ; LV"�W
2) At ?YX<*�?	P , @ has already received the previous message

and sends: @ZB)=[F\HV@ : �U] 8 ?YX ; : = : �^> 8 ?	P ; LV"K_
3) At ?�`a*)?YX , = has received the previous message and

sends: =bB)@RFSHV= : �U> 8 ?�` ; : @ : �U] 8 ?YX ; LO"KW .
The idea is that at ? ` (step 3), = had received the message

sent in step 2, and thus observed that a recent version of its
timestamp �U> 8 ?	P ; was included in a message, authenticated to
be from @ . Thus, = can safely assume ��] 8 ?YX ; is a recent value
of the timestamp from @ , posterior to ?�P . This relies on = prop-
erly generating initial values of clock ��> , i.e. not (or with low
probability) repeating values over the time.

Likewise, upon receiving the message sent from = to @ in
step 3, @ concludes, like = , that it has now a recent authen-
ticated value of �U> . After those steps are complete, = and @
both have knowledge about relatively recent values of each oth-
ers respective timestamps, which are not the result of replays

(or with very low probability). In that case, we say that the
handshake is completed.

A detailed parallel version of the algorithm now is given. It
is “parallel” in the sense that the same message, sent by a node= to perform the previously illustrated handshake, this time is
sent to several nodes (ideally all) in the network, rather than to
an individual node @ . Also some provisions are taken, for being
able to practically perform timestamp check, and for switching
to new timestamp intervals.

The protocol relies on one unique new kind of message, a
timestamp exchange message, being flooded periodically by
each node. When maximal security is desired, the message
should be a transmitted by pure flooding to the network.

It is assumed that each node keeps a table of the informa-
tions from the latest timestamp exchange message it received
from each node. This table is called the timestamp table. Thus
considering a node = , for each node @ , node = records the
following information:� a boolean c >] indicating whether the handshake with @

has been completed,� the timestamp, � >] , from the latest timestamp exchange
message received by node = from node @ (in case the
handshake is completed), or the list of the latest times-
tamps �Md >]e0 f received (in case the handshake is not com-
pleted),� a set of different timestamp interval tuples for i=1,.., g >] :

8 � >]e0 �ih �S0 h : � >]e0 ����� 0 h :Yj >]e0 h ;
where j >]Uk is an expiration time, indicating the tuple
should only be used until the time reaches j >]Uk (when the
handshake is completed).

In node = , each timestamp interval tuple of @ , describes
a valid interval for timestamps of @ . There are several such
timestamp interval tuples for @ (several l ), in order to allow
for timestamp interval changes. Such a change would occur,
when for instance the node would decide to regenerate a clock
from scratch. The timestamp interval tuples are used with the
following timestamp check “algorithm”:

In node = , at ? , a timestamp m\] from a message from @ is
valid if and only if:� there exists one l , such that� 8 � >]e0 �ih ��0 hon m ] n � >]e0 ����� 0 h and ? � j >]e0 h ;

This timestamp check does not apply to timestamp exchange
messages themselves, described below.

At node = , given two valid timestamps from @ , m ] and mqp ] ,
an ordering relation can be established for comparison:� Let r and r�p be the indexes such that: 8 � >]e0 �sh ��0 f n mS] n� >]t0 ����� 0 f ; and 8 � >]t0 �ih ��0 fYu n m pv] n � >]t0 ����� 0 fYu ;� Then it is decided that m ] *wmqp ] , if and only if:

– rx*/r p
– or: rqywr�p and m ] *wmqp ]

This is used for determining which of two messages, to
which the timestamps relate, is the most recent.

For protocol completeness, in node = , the timestamp � >] is
said to be orphaned when c >] is z 5�{}|T~ or when � >] does not
pass the timestamp check with any of the timestamp intervals
8 � >]t0 �ih ��0 h : � >]t0 ����� 0 h :Yj >]t0 h ; . This can occur when some (or all)
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of those intervals expire, usually meaning that communication
between node = and node @ is broken.

This yields a formal definition of “completion of handshake
between = and @ ”: a handshake is complete for node = when@ has a timestamp � >] which is not orphaned. Each time c >]
was true and the timestamp � >] becomes orphaned because of
timestamp interval, c >] is updated as: c >] & z 5�{�|T~ .

The protocol relies on two parts: the generation and the pro-
cessing of timestamp exchange messages. Each of these parts
will be described in the following.

The generation algorithm of the timestamp exchange mes-
sages is as follows: node = sends periodically one timestamp
exchange message, containing:� its current clock � ���	1> . � ����1> must not be orphaned with

respect to the bounds set out in the following item,� its current timestamp bounds set: g ���	1> , and for l[y�t����� g ���	1> ,

8 � ���	1>90 �ih �S0 h : � ���	1>90 ����� 0 h :Y. ���	1>90 h ;
where . ���	1>90 h is the maximal duration for which the tuple
should be kept,� the content of its timestamp table, tuples: 8 A : � >� ; for
each node A from which it has received a timestamp. Note
that for each A with which the handshake is not com-
pleted, there might be several 8 A : �<d >� 0 f ; . In this case, once
the 8 A : �%d >� 0 f�; have been sent, the tuples are removed.� (the message is also signed)

Node = also records the latest timestamp bounds set it sent:

8 � >90 �ih ��0 h : � >90 ����� 0 h ;
The processing algorithm of the timestamp exchange mes-

sages for a node = , receiving a message from node @ , is as
follows:� check, for the entry of @ (if it exists) in the timestamp

table to determine if c >] was ?	�V� ~ but the � >] has become
orphaned. If � >] has become orphaned, then c >]a& z 5�{}|T~� If no reported timestamp from = , inside the timestamp ex-
change message pass the timestamp check in = (or if there
is no � > in the message):

– If no entry for @ was recorded or if c >] is z 5�{�|�~ , the
timestamp from the message � ] , is added to the list
of the timestamps �Md >]e0 f .

The idea here is, that the node, @ , hasn’t provided enough
proof of freshness, for = to accept the timestamp inter-
vals. However � ] should be kept such that in next mes-
sage from = it would serve as proof of freshness. All � ]
received should be kept since some could constitute invalid
replays.� Otherwise: The handshake is certain to be completed and
the timestamp bounds are updated if necessary:

– if no value � >] was recorded or if c >] was z 5�{�|T~ , or if
the new timestamp �U] of the message is greater than
the latest timestamp recorded � >] (with the timestamp
comparison rules given previously):� � >] is updated with the timestamp from the mes-

sage: the previous list �Md >]t0 f is emptied and: � >]�&� ] .

� The timestamp bounds for @ are updated
with the values from the timestamp ex-
change message. g >] & g ] , and forl y �t����� g ] : 8 � >]t0 �ih ��0 h : � >]e0 ����� 0 h :Yj�]e0 h ;& 8 � ]t0 �ih ��0 h : � ]e0 ����� 0 h :Y.�]e0 h�� ? ; where ? is
the wall clock at node = .

– c >] & ?	�V� ~
It is expected that the “timestamp bound set” of a node is

limited to one interval 8 � X>90 �ih � : � X>90 ����� ; , and only occasionally
updated when a new timestamp interval 8 � `>90 �ih � : � `>90 ����� ; is
generated. The transition is typically the following:� = advertises the interval 8 � X>90 �ih � : � X>90 ����� ; and generates

timestamps in this interval.� for some duration, = advertises interval 8 � X>90 �ih � : � X>90 ����� ;
and a new interval 8 � `>90 �ih � : � `>90 ����� ; . = will still generate
timestamps from the first interval, to waiting for the new
interval to be updated in receiving nodes.� for some small duration, = advertises both interval
8 � X>90 �ih � : � X>90 ����� ; and interval 8 � `>90 �ih � : � `>90 ����� ; . = now
generates timestamps from the second interval, while it
keeps advertising the old interval.� = advertises only interval 8 � `>90 �ih � : � `>90 ����� ;

Note that variations are possible, such as also updating times-
tamp table on receiving messages such as HELLOs, introducing
some maximum deviation

�������
from the last received times-

tamp, or using local wall clock (possibly with a random offset),
instead of an incremental counter. Optimizations are possible,
to avoid sending lists of timestamps of the same node before
handshake completion (such as sending immediately an time
exchange message), along some with denial of service detec-
tion with respect to the handshake protocol.

VI. PUBLIC KEY ACQUISITION

The security mechanism described in section IV assumed
that provisions existed such that any node in the network would
be able to acquire the keys required for verification of signa-
tures of any other node. In the case where shared-secret sys-
tems are employed, key-distribution must be performed such
that the shared secret key cannot be acquired while in transit
(nor, preferably, recovered from a node after distribution).

Public-key systems have a strength in that public keys can
be exposed to anyone - the difficult part being for a node to
validate that a public-key, claiming to belong to a specific node,
in fact does belong to that node. A key problem in public key
cryptography is thus the distribution of keys in a way such that
the public keys can be trusted - i.e. that they belong to the node
to which they claim that they belong. In the context of this
paper, this translates into the ability for a node to trust received
information.

In this section, we will outline two simple public key infras-
tructure (PKI) systems for MANETs. They both serve the pur-
pose of making public keys available to nodes in the network
in a way such that the authenticity of the keys can be trusted.
The two PKIs differ mainly in that the first is “proactive”, i.e. it
proactive aims at diffusing public-key information to nodes in
the network, while the second is “reactive: nodes request keys
when required only.
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We note, that the PKI systems outlined here are “basic” in the
sense that they concern them self with simple key distribution.

A. A Simple Proactive PKI for OLSR

For the purpose of distributing and trusting public keys, we
propose a simple proactive PKI for OLSR.

This PKI operates with three classes of nodes, as seen from
an individual nodes point of view:

Untrusted Nodes
A node, a, considers another node, x, as an “untrusted
node” if the public key of x is not known by node a or
if the public key of node x is known, but not validated
by a signing authority in the network. I.e. signature
messages, received from an untrusted node, cannot
be verified. Notice, that at network initialization, all
nodes except the signing authority and the node itself
will be “untrusted”, from the individual nodes point
of view

Trusted Nodes
A node, a, considers another node, x, as a “trusted
node” if the public key of x is known by node a and the
public key of node x is validated by a signing authority
in the network. I.e. signature messages, received from
trusted nodes, can be verified.

Signing Authorities
A “signing authority” is a node, which has the special
property that its public key is a priori known by all
nodes in the network. A signing authority has special
responsibilities for the network, namely to:� allow new nodes to register their public keys in a

secure fashion (typically through manual authen-
tication), whereby a new node becomes a “trusted
node”,� periodically distribute certificates, containing:
– a list of public keys for all “trusted nodes”,
– a signature, verifying that the message, con-

taining the public keys of the “trusted nodes”
was, indeed, issued by the signing authority
and was not modified while in transit.

Each node that wishes to participate in the network is re-
quired to register its public key with a signing authority. The
signing authority will issue certificates periodically, which will
be broadcast to the entire network. Nodes, receiving the cer-
tificates, will store these for a specified amount of time, after
which they expire. Hence, periodic refresh of certificates is re-
quired.

Upon network initialization, no nodes know any public keys
other than that of the signing authority (and, of course, their
own). Thus, disregarding control traffic from the signing au-
thority, all nodes will by default ignore control traffic from each
other and. Thus, no nodes will select MPRs - and no broadcast
messages will be forwarded. Control traffic from the signing
authority will be accepted by its neighbors since they know the
public key of the signing authority in advance. Thus, until the
signing authority starts broadcasting certificate messages, no
network formation will take place. Unless special provisions
are made, only neighbor nodes of the signing authority will ever

receive the broadcast certificates: since successful verification
of a signature is a criteria for accepting any control messages, 2-
hop neighbors of the signing authority will never accept control
messages from 1-hop neighbors of the signing authorities. This
implies that a symmetric link between 1-hop and 2-hop neigh-
bors of the signing authority will never be established. The
signing authority will therefore never select MPRs and, thus,
that certificates will never be broadcast into the network.

Thus, to enable network initialization, special provisions for
accepting some control messages without validation of signa-
tures must be provided. The desired goal is to allow for MPR
flooding to take into account the fact that broadcast messages
should be able to reach also untrusted nodes in the network.
Thus, to enable this, the following additional conditions apply� A node must accept unsigned HELLOs from untrusted

neighbors (i.e. neighbors, whos public key is not yet
known to a node). Such HELLO messages are accepted
under the restriction that:

– asymmetric and symmetric links are considered as
asymmetric and symmetric, respectively,

– MPR links are considered as symmetric only (i.e. do
not affect the MPR selector set),

– lost links are ignored� A node must maintain a “trusted neighborhood” contain-
ing information about links to the trusted nodes in its
neighborhood� A node must maintain an “untrusted neighborhood”, con-
taining information about links to the untrusted nodes in
its neighborhood.� A node must, from among the trusted neighborhood, per-
form MPR selection as specified.� A node must, periodically, transmit HELLO messages, in-
cluding the trusted neighbors (with status: asym, sym and
MPR as appropriate) and untrusted neighbors (with status:
asym, sym only)

A nodes 2-hop neighborhood will contain both “trusted” and
“untrusted” nodes. MPRs are selected from among the trusted
nodes such that - if possible - all nodes in the 2-hop neighbor-
hood are covered.

Thus, upon network initialization, the signing authority will
transmit its certificate, which is received by its 1-hop neighbors.
Following HELLO message exchange, the 1-hop neighbors will
accept the untrusted 2-hop neighbors as symmetric (but not se-
lect MPRs among them). The signing authority will then se-
lect MPRs from among the 1-hop neighborhood such that the
next broadcast certificate will reach the 2-hop neighbors etc.
The certificates will thus, upon network initialization, propa-
gate from the signing authorities and towards the edges of the
network.

Notice, that a information coming from “untrusted” nodes
is only used to handle “untrusted” nodes: MPR selection etc.
is performed only among “trusted” nodes, as is MPR selector
information only diffused about “trusted” nodes.

Also notice, that no explicit mechanisms for revoking keys
is presented. To facilitate key revocation, certificate messages
may be equipped with a sequence number, associated with
the set of keys advertised. Whenever the set changes (keys
are added or removed) the sequence number is incremented,



10

and included in following certificate messages. Upon receiv-
ing a certificate messages, nodes can distinguish between older
and newer information, and remove expired keys. In order to
counter possible replay attacks, timestamps - as described in
previous sections - can be employed.

B. A Simple Reactive PKI for OLSR

Unlike the previous PKI, designed to be a proactive distri-
bution of public keys, this section describes a simple reactive
PKI for OLSR. The behavior is reactive, that is, when a node
does not possess some required information itself, it diffuses a
query to the network. In this case, the required information is
the public keys of some nodes in the network.

The same framework as in previous section is assumed, and
the same notation as in the section V is used.

Two new types of messages are introduced, Key request and
Key reply.� A key request is a message from a node = , with a nonce� > initialized with random values for each request, a list

of nodes @ h for which the public key is need: =�B 5�{�{ FHT= : � > : @<X : �v��� : @$�ULV"KW� Upon receiving such a request message, a signing author-
ity:

– first checks the signature of the message = , if it has
the public key of ! > .

– if the public key of at least one @ h in request is known
by the authority, a Key reply is generated. The re-
ply includes all the public keys it knows: ��B 5�{�{ FHV� : = : � >s: 8 @ h�� : �<� ] k � ; : ����� 8 @ hv� : �<� ] k � ; L "K�� Upon receiving such a reply message, the originating node= , performs the following checks:

– that the destination of the message is indeed = .
– that � is a signing authority that it trusts.
– that the signature of the message with !�� is correct.
– that the nonce

� > was a nonce it recently used. This
is to avoid replay.

If those checks succeed, node = finally updates its public
key database with the newly acquired keys.� In order to ensure proper delivery of Key request and Key
reply messages, pure flooding is used. I.e. a node will
retransmit a received message the first time it receives it.

As with the proactive PKI, considerations regarding key re-
vocation are not presented. These features, however, can be
fashioned through lifetime of the public keys and periodic re-
freshing through renewed request-reply cycles.

VII. CONCLUSION AND FURTHER WORK

In this paper, we have examined the issues related to secu-
rity of a proactive link-state protocol such as OLSR. Some of
the insights provided are general to a larger class of protocols
(link-state protocols, or proactive protocols), while others are
related directly to optimizations specific to OLSR (such as to
MPR flooding). The source of vulnerability of OLSR, which is
common to link state protocols in general, was identified: in-
troduction of incorrect topology information (either locally or
globally). To secure the protocol against foreign nodes with ma-
licious intent, a framework was described using authentication

checks. This framework included a way to diffuse authentica-
tion of OLSR protocol messages, a discussion and description
of algorithms for timestamps to prevent the difficult problem of
replay attacks, in which a malicious node “replays” previously
valid traffic in the network. Finally, the framework included a
description of two algorithms for public keys acquisition. One
of these is proactive, fitted to the link state behavior in gen-
eral and to OLSR in the specifics, illustrating the other difficult
problem of making the PKI interact with the routing protocol
during “bootstrap”. The other algorithm for key acquisition is
a simple, reactive, but potentially expensive (in terms of over-
head), protocol.
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